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ABSTRACT

Determining the signal quality of surface electromyography (SEMG)
recordings is time consuming and requires the judgement of trained
observers. An automated procedure to evaluate sEMG quality would
streamline data processing and reduce time demands. This paper
compares the performance of two supervised and three unsupervised
artificial neural networks (ANNs) in the evaluation of SEMG quality.
Manually classified sEMG recordings from various lower-limb
muscles during motor tasks were used to train (n=28,000), test
performance (n=12,000) and evaluate accuracy (n=47,000) of the five
ANNSs in classifying signals into four categories. Unsupervised ANNs
demonstrated a 30—40% increase in classification accuracy (>98%)
compared with supervised ANNs. AlexNet demonstrated the highest
accuracy (99.55%) with negligible false classifications. The results
indicate that sSEMG quality evaluation can be automated via an ANN
without compromising human-like classification accuracy. This
classifier will be publicly available and will be a valuable tool for
researchers and clinicians using electromyography.
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INTRODUCTION

Surface electromyography (SEMG) is a non-invasive method for
recording muscle excitation. Electrodes are placed on the skin surface
atop muscle bellies and form a conducting medium through which
the electric potential of the underlying depolarizing motor units is
measured. The signal measured at the skin surface is produced by a
combination of many depolarizing muscle fibres, acquired only after
the signal has travelled through various tissues (e.g. connective tissue,
fats and skin). Mechanical perturbations of the skin—electrode
interface, known as movement artefact, can distort the SEMG
(Raez et al., 2006). Furthermore, the signal can be contaminated
by electro-technical noise from electronic equipment, ambient noise
caused by electromagnetic radiation from power sources (Amrutha
and Arul, 2017) and by unequal skin—electrode impedance between
bipolar electrodes (Merletti et al., 2001). Handling these sources of
noise, while preserving signal integrity for subsequent interpretation,
is challenging.
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Electromyography (EMG) is widely used in clinical (e.g.
characterization of neuromuscular pathologies), biomedical
(e.g. modern human machine interfaces) and neurophysiological
(e.g. study of human motor control) applications. For example,
neuromusculoskeletal models used to study human movement use
SEMG to estimate muscle forces and tissue loads inside the human
body (Pizzolato et al., 2015). However, neuromusculoskeletal
models rely on valid measures of muscle excitation to produce
physiologically plausible outputs. Given the inherent potential for
signal contamination, SEMG quality must be evaluated prior to use.
Signal properties (e.g. signal-to-noise ratio, frequency spectrum,
bursts of activation) are commonly evaluated after data acquisition
by visual inspection (Raez et al., 2006). However, visual inspection
is time demanding and subjective, and requires trained observers.
Development of an automated procedure to evaluate SEMG quality
both during and following data acquisition would significantly
reduce the burden for researchers and clinicians.

A robust solution for automated SEMG evaluation could be
achieved using artificial neural networks (ANNs), which are
increasingly used for pattern recognition and classification in the
field of machine learning (Russakovsky et al., 2015). An ANN is
an information-processing system that simulates the function of
biological neurons, and consists of multiple interconnected layers
and connection weights (Basheer and Hajmeer, 2000). To classify
the dataset in the desired manner, the ANN must be trained, during
which connection weights and layer variables are adjusted using
features extracted from input signals (Subasi et al., 2006). Feature
extraction can be performed either by the user, also known as
supervised learning, or automatically by the ANN, known as
unsupervised learning (Bengio, 2009), with the latter showing
increasingly superior performance in recent years (Schmidhuber,
2015). By combining training and prior manual classification,
ANNSs are subsequently able to choose the best pattern with which
to categorize inputs; however, the exact way an ANN learns differs
depending on their type, architecture and application. Once an ANN
is trained, it can classify new signals by applying the previously
learned relationship between input and output.

The paramount performance metric of an ANN is accuracy. In the
field of machine learning, accuracy is a technical term referring to
the percentage of classifications performed by the ANN that match
the true manual classification. Using ANNSs, researchers have
successfully distinguished between different wrist and thumb
movements used to control an active hand prosthesis (Arvetti
et al., 2007), detected different phases of the gait cycle (Joshi et al.,
2013) and differentiated between SEMG acquired from healthy and
neuropathic individuals (Sadikoglu et al., 2017), thus demonstrating
the potential of ANNs for human movement applications.

In the year 2017, there were 732 publications identified in
PubMed using a key word search of ‘surface electromyography’.
We anticipate that an automated method to evaluate SEMG quality
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List of abbreviations

ANFIS adaptive neuro-fuzzy inference system
ANN artificial neural network

CNN convolutional neural network

EMG electromyography

PNN pattern recognition neural network
SEMG surface electromyography

and exclude spurious signals will have widespread practical
application. The aims of this study were first to evaluate the
performance of five ANNs used to classify sSEMG signal quality
and, second, to build an automated and robust SEMG classification
tool using the best-performing ANN. We hypothesized that ANNs
for sSEMG classification using unsupervised learning would have
superior classification performance in comparison to ANNs using
supervised learning, and sEMG evaluation could be automated
using an ANN to achieve human-like accuracy (~95%)
(Russakovsky et al., 2015).

MATERIALS AND METHODS

Data acquisition

Three datasets [1: SCOPEX — The University of Melbourne Human
Research Ethics Committee (HREC) 11377168; 2: load sharing
trials — Department of Defence and Veterans’ Affairs HREC
756-14; 3: ARF — Charles Sturt University HREC 2013/185] were
combined, resulting in 87,000 individual sEMG signals from
various trunk and lower-limb muscles, including rectus abdominis,
vastus lateralis, rectus femoris, semitendinosus, biceps femoris,
gastrocnemii and gluteus maximus. The five ANNs evaluated were
ANFIS, PNN, AlexNet, VGG16 and ResNet50 (described in detail
below). Recordings from different trunk and lower-limb muscles,
data acquisition systems (1: Noraxon Telemyo 900, 1200 Hz; 2:
Noraxon Telemyo 900, 1000 Hz; 3: Trigno Delsys, 1000 Hz) and
biomechanics laboratories were included to increase robustness of
the ANNs and prevent overfitting to one distinct experimental or
laboratory condition.

Signal processing

A standard approach was used for SEMG signal processing. First, a
zero-offset correction was performed to remove any direct current
value that may be present due to poor grounding. Data were then
filtered using a zero-lag second-order Butterworth bandpass filter
(30-300 Hz) to remove low-frequency noise caused by movement
artefacts and high-frequency noise caused by higher harmonics
from the mains, motors or light sources (Lloyd and Besier, 2003;
Raez et al., 2006). The bandpass-filtered signal was full-wave
rectified and low-pass filtered with a zero-lag second-order
Butterworth low-pass filter (f;=6 Hz) to create a linear envelope
(Lloyd and Besier, 2003; White and Winter, 1992).

Manual classification

The sEMG data were manually classified into four categories by one
operator as ‘good’, ‘usable’, ‘noise’ and ‘no signal’ (Fig. 1). Clearly
defined signals with a high signal-to-noise ratio were classified as
good. Signals where the signal-to-noise ratio was low, but individual
bursts of excitation were still distinguishable were classified as
usable. Signals where individual bursts of muscle excitation were not
distinguishable from noise were classified as noise. Signals with
an absence of any noise or bursts of excitation were classified as no
signal. To prevent bias towards one category during the ANN training
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Fig. 1. Visualization of categories for surface electromyography (sEMG)
classification. In each plot, the filtered SEMG is displayed (blue), as well as a
line at zero (pink; bisecting positive and negative voltages) and the linear
envelope (pink; undulating positive signal). (A) ‘Good’, defined as clearly
distinguishable signals with a high signal-to-noise ratio. (B) ‘Usable’, defined as
signals where signal-to-noise ratio was low, but individual bursts of excitation
were still distinguishable. (C) ‘Noise’, defined as signals where individual bursts
of excitation were not distinguishable from noise. (D) ‘No signal’, defined as
signals that had an absence of any noise or bursts of excitation.

and in subsequent categorizations, an equal number of samples
(n=10,000) from all signal categories was used to train all ANNs.
This meant that all five ANNs were trained using the same 40,000
of the available 87,000 sEMG signals. These 40,000 samples
with equally distributed SEMG quality classifications were then
randomized and split into 70% (»=28,000) intended for training and
30% (n=12,000) for performance evaluation. Separating training
from evaluation data is a standard procedure in the field of machine
learning, and is designed to prevent erroneously high evaluations of
ANN accuracy caused by testing performance on the same data used
for training (Dobbin and Simon, 2011). The remaining 47,000 SEMG
with uncontrolled classification distribution were used for additional
performance testing.

Machine learning

Five ANNs were trained using MATLAB 2017b (MathWorks,
Natick, MA, USA). Two were supervised ANNS: (i) adaptive neuro-
fuzzy inference system (ANFIS) (Jang, 1993) and (ii) pattern
recognition neural network (PNN) (MathWorks). Three were
unsupervised ANNs: (i) AlexNet (Krizhevsky et al., 2012),
(i) VGG16 (Simonyan and Zisserman, 2015) and (iii) ResNet50
(He et al., 2016). These five ANNs were selected as they have
previously shown promise in delineating motor control tasks via
sEMG classification (Arvetti et al., 2007; Joshi et al., 2013;
Sadikoglu et al., 2017). The ANFIS is a multi-layer feedforward
neural network that works on fuzzy logic using ‘If-Then’ rules as a
way of dealing with uncertainty when deciding on the output class
of a signal. The combination of fuzzy logic and If~Then rules
approximates human information processing and leads to an
improved classification accuracy in certain ANN applications
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(Giiler and Ubeyli, 2005; Jang, 1993). The PNN is a feedforward
network-designing tool included in the proprietary programming
language MATLAB as part of the Neural Network Toolbox. Here,
the number of neurons and the training algorithm can be adjusted to
fit the specific dataset, creating a highly customized neural network.
AlexNet, VGG16 and ResNet50 are convolutional neural networks
(CNN?), i.e. unsupervised neural networks specifically designed for
image recognition. An overview of the five architectures can be
found in Fig. SI. A CNN classifies images by automatically
extracting discriminable features and recognizing patterns therein
(Krizhevsky et al., 2012). To be classified by the three CNNs, the
SEMG recordings were converted to images (.jpg file format).

ANN training

To train the ANFIS and PNN, a discrete wavelet transform (using
Daubechies 7 as the mother wavelet) was first performed on the
bandpass-filtered SEMG signals. The following commonly used
features were subsequently extracted from the processed sEMG
signals (Phinyomark et al., 2012):

| &
Mean absolute value = ﬁz %], (1)
n=1
| X
Variance of EMG = m;xi, (2)

Root mean square =

Power spectrum ratio = % = Z P;/ Z P;, (4)
where x,, is the nth sample of the SEMG signal, N is the length of the
SsEMG signal, P; is the SEMG power spectrum at frequency bin j, f;
is a feature value of the peak frequency, nl is the integral limit, Py is
the maximum value of the SEMG power spectrum and P is the
whole energy of the SEMG power spectrum in the range 30-300 Hz.

For all three CNNs, the linear envelope was superimposed onto
the bandpass-filtered SEMG signal and subsequently converted to
an image (Fig. 1). All five ANNs were trained using a combination
of manual classification and extracted features or created images,
depending on their machine learning category.

Performance assessment

Performance of the ANN’s was assessed by four outcome measures:
accuracy, false-positives, false-negatives and time demand of
classification. Accuracy is the percentage of SEMG signal
classifications by the ANN that match a manual classification,
and is considered the primary performance outcome metric for this
study. False-positives and false-negatives are represented as the
percentage of SEMG falsely classified as better or worse quality,
respectively. Time demand of classification is the computational
time (s) required by the ANN to classify 1000 samples of SEMG on
an Intel Core i5-3570 processor with 16 GB of RAM, which are
computer specifications a user is likely to have. The computational
time demand of classification is important for the practical
implementation of the classification tool.

RESULTS AND DISCUSSION

ANFIS and PNN

The computational time demand of classification for the ANFIS and
PNN was low (Table 1), but performance of both was unsatisfactory

Table 1. Accuracy, false-positives, false-negatives and time demand for
classification using the five artificial neural networks tested

Supervised learning Unsupervised learning

ANFIS PNN AlexNet VGG16 ResNet50
Accuracy (%) 60.00 70.90 99.55 98.62 99.31
False-positives (%) 30.29 15.89 0.08 0.67 0.06
False-negatives (%) 9.71 13.21 0.38 0.72 0.62
Time demand (s) 0.34 0.29 244 28.90 23.47

ANFIS, adaptive neuro-fuzzy inference system; PNN, pattern recognition
neural network.

compared with that of the three CNNs. Accuracy was low (60.0%,
70.9%) and both false-positives (30.3%, 15.9%) and false-negatives
(9.7%, 13.2%) were high.

CNNs

The CNNs produced better results than either of the supervised
learning ANNs (Table 1). Accuracy was >98%, and both false-
positives and false-negatives were reduced to <2% in all three
CNNs. AlexNet and ResNet50 yielded comparable classification
performance, and both were superior to VGG16; thus, they were
considered for the automated SEMG classification tool. The
performance of AlexNet and ResNet50 is shown in Fig. 2.
Generally, the noise and no signal classes had better accuracy
than the good and usable classes. False-positives for classification
of noise to good amounted to 0.03%. The usable class showed the
largest classification uncertainty of the four classification categories
(combined false-positives and false-negatives: 1.77-2.73%).

Classification tool

Implementing and testing the two best-performing CNNs on the set
of sSEMG data not included in ANN training (i.e. the remaining
47,000 manually classified SEMG) confirmed that AlexNet and
ResNet50 both had human-like classification accuracy (~95%)
(Russakovsky et al., 2015). AlexNet was chosen for use in the
automated SEMG classification tool because ResNet50 had a
comparatively high computational time demand (23.47s for
ResNet50, 2.44 s for AlexNet).

The sEMG classification tool functions in five steps. First, data
stored in c3d file format (commonly used to record synchronized
motion and analog data containing SEMG signals acquired in
biomechanics laboratories: C3D.org 2018) are imported into the
tool and SEMG signals are extracted. Second, SEMG from each c¢3d
file is filtered as described above. Third, images of the processed
SEMG recordings are created. Fourth, those images are classified
into four categories (i.e. good, usable, noise and no signal). Last,
images are sorted into folders based on their category, and
classification results are saved in an easily interpretable American
Standard Code for Information Interchange (ASCII) file.

Conclusions

The aims of this study were, first, to evaluate the performance of five
different ANNs used to automatically classify SEMG quality and,
second, to build an automated and robust sSEMG classification tool
using the best-performing candidate ANN, thereby streamlining
data processing, minimizing subjectivity and reducing the burden
on researchers and clinicians using SEMG. Unsupervised learning
ANNSs showed superior classification performance in comparison to
supervised learning ANNS, confirming our first hypothesis. The
best-performing ANNs, AlexNet and ResNet50, which each
demonstrated >99% accuracy, were used to build and test two
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Fig. 2. Confusion matrix for the two convoluted neural networks (CNNs).
(A) AlexNet (overall accuracy: 99.55%). (B) ResNet50 (overall accuracy:
99.31%). The horizontal axis shows correct classifications; the vertical axis
shows classifications by the neural network; diagonal (green) indicates correct
classifications by the neural network. Classification values are presented as a
percentage (numerical value).

separate SEMG classification tools. Despite their comparable
performance, the computational time demand for ResNet50 was
much higher than for AlexNet, and therefore AlexNet was chosen
for the final version of the classification tool. The results
demonstrate that SEMG classification, which is normally time
demanding, tedious and subjective, can be automated using a CNN
without compromising human-like classification accuracy. We
encourage those interested to contribute manually classified
sEMG data to our dataset and to give feedback regarding use of

the SEMG classification tool. Contribution from the scientific and
clinical community will help to improve the robustness of this tool.

The results demonstrate that ANNs using unsupervised learning,
specifically the CNNs AlexNet and ResNet50, can achieve human-
like performance when classifying sEMG quality. This novel
observation confirmed our second hypothesis and highlights that
labour-intensive, subjective SEMG evaluation can be automated
without compromising accuracy. The two ANNs using supervised
learning, ANFIS and PNN, showed poor performance metrics due
to their respective computational architectures. The ANFIS can
handle uncertainty in classification but is unable to account for the
high signal variability present in SEMG, which led to a substantial
decrease in accuracy. The PNN is specifically designed to fit the
SEMG classification task and accounts for this inherent signal
variability in the SEMG dataset. This design feature contributed to
superior accuracy and fewer false-positives compared with the
ANFIS, yet performance of the PNN remained insufficiently robust
and did not approach human-like accuracy. The CNNs performed
considerably better than both the ANFIS and PNN because the
feature extraction and selection from the SEMG signal was
performed by the network itself rather than by the user. This
aspect of CNNs differs from supervised ANNs, where performance
is highly dependent on the appropriateness of selected and extracted
features. Hence, a CNN learns directly from the dataset and extracts
a high number of relevant features that are empirically determined to
be important to the classification of the signal.

Classification accuracy for AlexNet and ResNet50 was similar
and excellent. The wusable category showed the greatest
classification uncertainty with combined false-positives and false-
negatives amounting to 1.77-2.73% of the classifications. This
observation is unsurprising given that visual inspection of the usable
class is challenging and ambiguous for an expert human operator.
Computational time demand differences between the two CNNs can
be explained by their architectural complexity, i.e. AlexNet consists
of eight layers whereas ResNet50 has 50 layers. This time demand
means that classifying a set of 1000 images takes ResNet50
approximately 10 times longer than AlexNet, which in turn
decreases the practical usefulness of ResNet50 as a within-
laboratory or within-clinic tool.

Previous studies using CNNs achieved an accuracy of 99.40% in
iris recognition (Minaee and Wang, 2017), 99.95% in palm-print
recognition (Minaee et al., 2016) and 90.00% in seizure detection
(Acharya et al, 2018). The CNNs in this study showed a
performance similar to those of these prior reports, and provide
further evidence that robust classification automation can be
achieved using unsupervised machine learning. To our
knowledge, this is the first study to use CNNs for evaluating
sEMG quality and, in combination with the aforementioned studies,
highlights that CNNs can be implemented for a variety of clinical
applications with excellent outcomes. Limitations of the automated
SEMG classification tool presented in this paper should be
considered. Because of limited SEMG data availability, the ANNs
were trained on datasets from only three different laboratories, and a
selection of muscles, experimental tasks and conditions; thus, we
cannot guarantee the ANN performance using other datasets
acquired in different laboratories or experimental conditions.
Although the tool can reliably classify SEMG, its performance for
intramuscular or high-density EMG has yet to be evaluated. This
study’s limitations can be addressed by expanding the training
dataset to include samples from different electrode manufacturers,
configurations and types applied to different muscles, acquired at
different laboratories. To encourage this development, we plan to
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make the tool public, with a process for data curation, enabling us to
assist other researchers by sharing computational resources.

In conclusion, signal quality from SEMG can be evaluated with
>99% accuracy using an automated classification tool. Superior
classification performance was achieved by the AlexNet and
ResNet50 CNNs compared with the tested ANNs that used
supervised learning. AlexNet showed a smaller computational
time demand than ResNet50 and consequently was used to build a
tool for automated SEMG quality evaluation. This tool demonstrated
reliable performance and can be used to streamline data processing
without compromising human-like classification accuracy. If
implemented during data acquisition, it may also have the
potential to quickly identify and thus reduce the number of SEMG
recordings with low signal-to-noise ratio. Expansion of the training
dataset could further improve the versatility and evaluation
performance of the tool.
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